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A method for calculating unsteady boundary-layer flows, based upon a vor- 
ticity-stream function formulation, has been supplemented by an appropriate 
viscous-inviscid interaction law to extend the calculations to large but finite 
Reynolds numbers. Two examples are considered in detail, namely the impulsive 
motion of a circular cylinder, and the flow induced when a line vortex is introduced 
into the neighbourhood of a circular cylinder. For the first of these a comparison of 
the results obtained with earlier boundary-layer and interactive calculations, 
Navieratokes solutions and experiment is made. 

1. Introduction 
I n  this paper we are concerned with unsteady viscous flows both in the high- 

Reynolds-number boundary-layer limit, and a t  high but finite values of the 
Reynolds number. 

For steady boundary-layer flows it is well established, through the work of 
Goldstein (1948), that flow separation is accompanied by the appearance of a 
singularity a t  the point of vanishing skin friction. It is,known that this singularity 
is a creature of the boundary-layer equations, and that the flow structure in the 
neighbourhood of separation is more complicated than that offered by boundary- 
layer theory if an adequate representation of the Navier-Stokes equations is to be 
realized. For unsteady flow in which separation, or flow breakaway, occurs the 
boundary-layer solution develops a singularity a t  a finite time. This breakdown has 
been demonstrated by van Dommelen & Shen (1980, 1982) in their numerical 
solution of the boundary-layer equations in Lagrangian coordinates for the flow past 
an impulsively moved circular cylinder, and the structure of the singularity a t  
breakdown has been analysed by them. Working within an Eulerian framework both 
Cowley (1983), who uses series extension methods, and Ingham (1984), who uses a 
series truncation method, have confirmed the structure of the singularity a t  the point 
of breakdown. 

Veldman (1979) has developed a practical method of calculation for steady flows 
a t  very high Reynolds numbers which retains the essence of the flow structure in the 
neighbourhood of separation referred to above. His method is based upon the 
boundary-layer equations ; these are supplemented by a viscous-inviscid interaction 
law which incorporates the displacement effect of the boundary layer on the outer 
inviscid flow. His calculations of the flow past an indented plate show that the 
singularity a t  separation is removed in the interactive calculation. More recently 
Henkes & Veldman (1987) have adopted this interactive scheme for unsteady flows. 
For the impulsively moved circular cylinder they do not encounter the singular 
behaviour of boundary-layer theory, although the complete time-history of this 
particular flow cannot be achieved by a method that is based upon a thin-layer 
approximation. 
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In  the present paper we have developed a method of solution of the boundary- 
layer equations that is based on a vorticity-stream function formulation ; this is 
incorporated into an interactive scheme when an interaction law, in the spirit of 
Veldman (1979), is introduced. The advantage of our vorticity-stream function 
formulation is that it obviates the need to formally include any pressure variations 
in the boundary-layer equations. If the large normal pressure gradient, which may 
develop, is ignored a singularity can occur in the interactive calculations. Of course, 
this may be avoided by properly accounting for the normal pressure gradient as, for 
example, in Smith, Papageorgiou & Elliott (1984). We have applied our method to 
two problems both of which show breakdown a t  a finite time in the boundary-layer 
limit. In  each case we have confirmed the appearance of the singularity predicted by 
van Dommelen & Shen. In  order to  achieve the accuracy required for this we have 
introduced grid-stretching into our procedure in the neighbourhood of the 
singularity. 

The two problems we have addressed are (i) the impulsive motion of a circular 
cylinder and (ii) the flow induced when a line vortex is introduced into the 
neighbourhood of a circular cylinder. For (i) our boundary-layer calculations show 
good agreement in detail with the results obtained by others, and the results of our 
interactive calculations are in broad agreement with those presented by Henkes & 
Veldman (1987). This example provides a searching test of a high-Reynolds-number 
interactive method because, as the Reynolds number decreases, significant 
qualitative changes in the flow take place. These have been documented from careful 
flow visualization experiments by Bouard & Coutenceau (1980) and by Ta Phuoc Loc 
& Bouard (1985). The latter paper also presents numerical solutions of the 
Navier-Stokes equations up to Reynolds numbers 0(104), which are in good 
agreement with experiment. Numerical solutions up to  Reynolds numbers lo4 have 
also been obtained by Dennis & Staniforth (1971). For Reynolds numbers less than 
O( lo4) the flow is relatively uncomplicated ; recirculation regions develop a t  the rear 
stagnation point, as predicted by the work of Proudman & Johnson (1962), which 
increase in thickness and are eventually shed from the cylinder. But at higher 
Reynolds numbers, say O( lo4), the dominant feature of the recirculation regions 
appears away from the rear stagnation point itself, as may be seen in figure 4 ( a ) ,  in the 
form of an intense vortex which as the Reynolds number increases further becomes 
distinct from, but corotating with, the rear-stagnation-point eddy. It is this vortex 
that may be identified with the breakdown of the boundary-layer solution in the 
infinite-Reynolds-number limit. Our interactive calculations predict this qualitative 
change in the separating flow structure as the Reynolds number decreases. Moreover 
the value of such calculations is further emphasized by the difficulties that are 
experienced in the Navier-Stokes calculations for Reynolds numbers greater than 
lo4, difficulties which are undoubtedly due to the complex flow structure. 

I n  the second example of a vortex and cylinder, the breakdown of our boundary- 
layer calculations is in accord with the analysis of van Dommelen & Shen. This type 
of breakdown has also been observed by Doligalski & Walker (1984) in their study 
of a vortex convected along a plane boundary, and by Ersoy & Walker (1986) who 
consider the boundary layer on a plane boundary when a vortex pair advances to, or 
recedes from, it. Chuang & Conlisk (1989) have carried out  interactive calculations 
for the convected vortex, and although their calculations proceed beyond the 
boundary-layer breakdown point the solution does eventually fail, possibly for the 
reasons indicated above. We have experienced no breakdown in our interactive 
calculations although, as with (i), no st,eady-state solution is available, and our 
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results cannot be extended to the point where vortex shedding from the cylinder 
takes place. The flow structure at large finite Reynolds number is seen to be 
dominated by the appearance of a single eddy close to the cylinder, and slightly 
ahead of the vortex, as predicted by the boundary-layer calculations. 

2. The governing equations 

and kinematic viscosity v may be written as 
The Navier-Stokes equations of motion for an incompressible fluid of density p 

aa 
---0 A Cii = -v(yS/p+@')-Vv A Q, 
a i  

V . 0  = 0. (1% b )  

In  these equations p is the pressure, v the velocity, and Q = V A b the vorticity. If 
the pressure is eliminated by taking the curl of ( 1  a )  we recover Helmholtz's equation 
for the vorticity a, Our interest in this paper is with two-dimensional flows that are 
bounded internally by a circular cylinder, for which polar coordinates (r,f?) are 
appropriate. If the corresponding velocity components are (a, a) then (1 b )  is satisfied 
identically if we introduce a stream function % such that 

la$ - a$ 
F ae * a F  

B=-- u = --. 

The vorticity Q = (0, 0 , O )  for this two-dimensional situation, where 

and V2 is the two-dimensional Laplacian. The equation satisfied by 0 is, from 
Helmholtz's equation, 

In  (3) and (4) we now introduce dimensionless variables and, simultaneously, the 
classical boundary-layer scaling. We take the cylinder radius a as a typical length, 
and a /U,  as a time, where U, is some reference velocity. If we then write 

where Re = c2 = U,a/v is the Reynolds number, (3) and (4) may be written as 

In deriving (6a ,  b )  terms which are formally O(E) ,  due to the curvature of the 
boundary surface, have been omitted. 

The boundary conditions require, in addition to an initial condition a t  t = 0, that 
$ = 0 on y = 0, a@/a y+-u, where us is the inviscid slip velocity, and w + O  as 
y + 00. We further require a condition on w a t  the boundary which we derive, in 3 3, 
from the no-slip condition u = 0 at  y = 0, and finally that w and @ are periodic in 0 
with period 2n. 

Now, in this paper we are not only interested in solutions of the unsteady 
boundary-layer equations, and their breakdown a t  a finite time heralding flow- 



246 N. Riley and R. Vasantha 

separation, but also in solutions at large but finite Reynolds numbers. To find such 
solutions we adopt a viscous/inviscid interaction technique, and we anticipate that 
singularities which are a creature of the boundary-layer equations will be suppresscd. 
In that respect our solutions, still based upon a thin-layer approximation, are in 
accord with the Navier-Stokes solutions. The interactive constructions which inhibit 
the appearance of a singularity are local multistructured constructions centred upon 
the point a t  which the boundary-layer solution develops a singularity. Veldman 
(1979) and Henkes & Veldman (1987), see also rcferences cited therein, have pointed 
out the obvious difficulty of incorporating a local solution of this type into a 
composite solution. They indicate the desirability of working with a composite 
equation. Such an equation is (6), provided that the interaction between the thin 
viscous layer and the outer inviscid flow is properly treated. It is the viscous 
displacement velocity v, = d(u, &)/do, where 

is the displacement thickness, which drives the perturbation to the outer potential 
flow. When this is incorporated into the outer inviscid solution i t  results in a slip 
velocity on the cylinder surface y = 0 given by 

,S)/dBsin(a-O) 
1 -cos (a-0) us(0, t )  = u,(& t )  -- da . (7) 

In (7)  u,,(O,t) is the slip velocity a t  y = 0 predicted by potential theory, and the 
integral is a Cauchy principal value integral. 

In  arriving a t  ( 6 )  we have formally assumed, in ( 5 ) ,  that d = O ( E ) ,  and so is 
comparable with curvature effects. Within the interaction region v will be much 
larger than is implied by ( 5 ) ,  and this will be made manifest by larger numerical 
values of v in the solutions obtained for small but finite values of E .  A consequence 
of this is that it is an entirely consistent procedure to neglect curvature terms in ( 6 )  
and only retain the effects of finite Reynolds number, or non-zero c, in (7) .  In  his 
treatment of the displacement velocity, Veldman (1979) evaluates the integral in (7) 
only over the region of strong interaction. This again is consistent with the idea that 
v, % 1 there, but remains O(1) elsewhere. 

The stream function-vorticity formulation of the problem we are proposing in (6) 
is commonly used in the eolution of the Navier-Stokes equations, but its use with the 
boundary-layer equations is less common. An obvious disadvantage of the 
formulation is that the boundary vorticity is not prescribed a priori. However, the 
advantage to be gained is that the pressure is eliminated from the problem, and 
therefore so is the need to consider any pressure perturbations in the interactive 
calculations. If the flow develops such that a v / M  = O ( P )  then the approximation 
( 6 a )  to (3) fails and the solution may, once again, terminate in a singularity. Such an 
event has not taken place in our calculations, where the thin-layer approximation 
has proved to be the limiting factor?. 

7 N d e  added in proof It should, however, be noted that Smith (1988) has demonstrated that 
breakdown at a finite time can occur in any unsteady interacting boundary layer. 
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3. Numerical procedures 
Each of the flows which we consider in $4 below is initiated by an impulsive 

motion. In  the initial stages of the flow development interactive effects are 
unimportant and the solution of (6) is the Rayleigh solution 

1 
t) = - uSp J ' erf ($) ds + O ( t ) ,  7 = y/ti. 

We have taken (8) as our starting solution, evaluated at t = 0.01, for both our 
boundary-layer and interactive studies. To advance the solution beyond this initial 
time we have used a finite-difference scheme which we now describe. 

Consider the evaluation of (6) for w and @, in finite-difference form, a t  the point iM, 
jSy, ks t ,  where SO, 8y, 6t are the step lengths adopted for 8, y and t respectively in the 
calculation. We have used central differences throughout to represent derivatives 
with respect to t and y .  As we advance the solution in 6, and our technique involves 
making successive sweeps from 8 = 0 to 2n, we must ensure that regions of reversed 
flow can be satisfactorily handled. If ui,j,  > 0 then the representation of the 8-deriva- 
tive in ( 6 b )  as ( W ~ , ~ , ~ - O ~ - ~ , ~ , ~ ) / S O  leads to a stable procedure. However, if u ~ , ~ , ~  < 0 
we must represent that  derivative as ( w ~ + ~ , ~ ,  -wi, j ,k) /88 to  maintain stability. I n  
the latter case this requires information about w ahead of the point a t  which the 
solution is being sought. I n  our iterative procedure such information would be 
available from the previous sweep or, during the first sweep, from the solution a t  the 
previous time level. Upwind differencing of this type leads to a stable iterative 
procedure but only maintains an accuracy O(S8). In  the boundary-layer calculations 
accuracy in 8 is at a premium as breakdown is approached, as we shall see below. This 
being so we have adopted as a representation of the &derivative, the form 
( ~ ~ + ~ , ~ , k - w ~ - ~ , ~ , ~ ) / 2 6 8 .  This leads to accuracy 0(68*), and a t  the same time does not 
involve T A ~ , ~ ,  *, and therefore its sign, in the estimation of wi, j, k. This has worked well 
in our boundary-layer calculations, but has lead to instabilities in our interactive 
calculations, for which we have adopted the upwind difference formulation. The 
matrix of coefficients of the finite-difference equations which results from the 
discretization described above is of tridiagonal form ; the equations are solved by a 
standard algorithm. 

To update the solution at each station iS8 it  is necessary to know, or have some 
estimate, of w ~ , ~ , ~ ,  namely the value of w a t  y = 0. We evaluate this quantity as 
follows. The no-slip condition requires ut, o, Ic = 0. We calculate ui, k ,  j = 1 to  4 from 
t), using a difference formula accurate to O ( ~ Y ) ~ ;  and from q O , k  = au/ayJy=o we use 
a five-point one-sided formula to  express wi, o, in terms of ui,,, k, j = 1 to  4. 

As we have mentioned above, in the boundary-layer calculations resolution of the 
flow details with respect to the coordinate 8 is a t  a premium a t  the point in the 
boundary layer where breakdown occurs, say 8 = 8,. To enhance the resolution in the 
neighbourhood of 8 = 8, we have introduced grid stretching into our boundary-layer 
calculations. Thus for flows that are symmetrical about 8 = 0, as for example the 
impulsively moved circular cylinder, with breakdown a t  8 = f Os, we have introduced 
a new angular coordinate a: with 

0 

cos (a - a,) cos (a + a,) 
}{I- l + h  

dO 
da (9) 
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In (9) A is a parameter which has taken the value 0.1 in our calculations, and a = 
a, is the point which corresponds to 8 = 8,. The singular point OS is not known apriori 
in any particular problem, but may be estimated from a preliminary calculation in 
which there is no grid stretching. When only one such singular point is present, as for 
our example of a line vortex in the presence of a circular cylinder, we adopt for our 

cos (a - a,) grid stretching d8 
da l + h  ' 

where we have taken h = 0.4 in our calculations. We have only used the grid 
stretching, represented by (9) and (lo), for our boundary-layer calculations. For the 
interactive calculations the high resolution offered by this device has not proved to 
be necessary. 

Our iterative method, in advancing the solution from t to t+&, proceeds in the 
following steps. ( i )  With the values of u, ZI in ( 6 b )  taken as at time t ,  equations (6) are 
integrated by sweeping from 8 = 0 to 2n, with one pass across the viscous layer a t  
each station to update w and $. (ii) If the periodicity condition is not satisfied step 
(i) is repeated. In practice we find that a second sweep is only necessary for the 
asymmetric vortex and cylinder problem. (iii) The value of wi ,o ,k  is updated, and the 
earlier steps repeated until this quantity is satisfactorily converged. For the 
impulsively moved cylinder this quantity has to be updated more than one hundred 
times in the boundary-layer calculation as the breakdown time is approached, but 
never more than twenty in the interactive calculation. By contrast, for the vortex 
and cylinder problem fewer than seven such changes are required in either the 
boundary-layer or interactive calculations. (iv) At this point (u, v) are updated from 
$, and the foregoing steps repeated. For the impulsively moved cylinder up to fifty 
changes in (u, v) may be required to satisfy a convergence criterion in the boundary- 
layer calculations as breakdown is approached, whilst only three or four such updates 
are required for the vortex and cylinder problem. For our interactive calculations 
these are replaced by thirty and ten respectively. For the boundary-layer calculation 
we now have a converged solution at time t + &  For the interactive calculations a 
further step (v) is required in which u,(O,t) in (7)  is changed. This is achieved by 
estimating the derivative of 0" (us - u) dy, using central differences, with the current 
estimate of us. In the subsequent evaluation of the integral in (7) the singular part 
is subtracted before using Simpson's rule in the numerical evaluation. In practice, 
where there is significant interaction we have found that for the impulsively moved 
cylinder as many as six updates of us (with only half that number for the vortex and 
cylinder problem) may be required before we proceed to the next time level. 

The method described above works well in practice. It is not swift in operation, but 
then we have made no especial effort to improve its efficiency. In $4 below we apply 
the method to two problems; first the impulsively moved circular cylinder, and 
second the flow induced when a line vortex is suddenly introduced to the 
neighbourhood of a circular cylinder. 

(10) -= 1 -  

4. Examples 
4.1. The impulsively moved cylinder 

We apply the method outlined in $ 3  above to the flow around a circular cylinder 
which is impulsively set into motion at time t = 0 with speed U,,. We take our 
reference velocity U, = 2U0 so that uSp = sine. 

Several authors have addressed this problem and a useful reference source is the 
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paper by Henkes & Veldman (1987). In  particular one notes the seminal papers of 
van Dommelen & Shen (1980, 1982). These authors have not only obtained accurate 
solutions of the boundary-layer equations in a Lagrangian framework but have also 
uncovered the structure of the singularity which occurs in the solution at t = t,, 
beyond which no solution exists. They estimate t, = 3f0.05 (1980), t, = 3.0045 
(1982). The latter is probably the most accurate estimate that is available. They also 
find 8, = 111". Several authors present results from calculations carried out within 
the Eulerian framework. From these we mention in particular the work of Cowley 
(1983), Ingham (1984), Cebeci (1986) and Henkes & Veldman (1987). Cowley's 
approach is to extend the Blasius time-series expansion, which he does by up to as 
many as 51 terms, and then recast the series using rational functions. In  this way he 
is able to calculate important flow properties up to about t = 2.8. His estimate of the 
breakdown time is t, = 3.00. Ingham uses a method of series truncation in which the 
vorticity and stream function are expanded as sine-series whose coefficients satisfy 
ordinary differential equations which are integrated numerically. He uses up to  180 
terms in the truncated series from which he can estimate flow properties up to  t = 
2.94. His results suggest t, = 3.00. Henkes & Veldman employ a finite-difference 
method for both the boundary-layer equations per se, and the interaction equations. 
For the boundary-layer equations they encounter a stability problem in their 
calculations a t  about t = 2.8. But this is almost certainly a grid-size problem and 
only serves again to emphasize the high accuracy that is required to resolve the 
details of the solution close to the singular point. Their results are otherwise in good 
agreement with those of Cowley and Ingham. 

I n  our calculations, the results of which we now present, we have taken the outer 
edge of the computational domain to be a t  ym = 25 with Sy = 0.25. Although the 
increment in y may be thought to be rather coarse, numerical experimentation shows 
that it is entirely adequate. It is the step sizes St and SO that must be small if the flow 
details are to be resolved close to the singular point. We have chosen St = 0.01. 

For 88 various experiments have been done. We can report that with 68 = 7~1360 
without any grid stretching, the results are much less accurate than when we take 
SLY = lc/180, with grid stretching as in equation (9). The results from our calcu- 
lations are presented in figures 1-3 where shear stress, displacement thickness and 
the viscous displacement velocity are presented, respectively. The shear stress is 
perfectly well-behaved up to the breakdown point, as has been noted by other 
authors. The displacement thickness gives some hint of the difficulties that are to be 
encountered as t --f t,. At first, see figure 2, the dominant feature is the rapid increase 
in displacement thickness a t  the rear stagnation point. The work of Proudman & 
Johnson (1962) shows that SI, + 00 as t + co. However there is already evidence a t  
t = 2.9 of the event that terminates the solution at the finite time t = t,. But, as 
Cowley (1983) has observed, i t  is the viscous displacement velocity w, that might be 
expected to reveal in a dramatic fashion the presence of a singularity in the solution. 
That this is so may be seen in figure 3. These results may be compared with Cebeci 
(1986, figure 5). There, no hint of singular behaviour for t x 3.0 is observed, which 
leads him to conjecture that the only singularity is that associated with the steady- 
state solution. This view is not shared by the present, or other, authors and casts 
doubt over the effectiveness of the method of solution proposed by Cebeci. The work 
of van Dommelen & Shen (1980) shows that as t+t,, vm - C(t,-t)-i, where C is a 
constant. Further, as we see from figure 3, the angular region over which the rapid 
rise in w, takes place diminishes in extent as t t,. If AOs is a measure of this it can 
be shown that AO, = O { ( t , - t ) ~ } .  This latter result demonstrates the need for high 
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FIGURE 1. The skin friction, at various values o f t ,  from the  boundary-layer calculation. 
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F t G u K E  2. The displacement thickness 6, at various values oft,  from the boundary-layer 
calculation. 

resolution close to 8 = 8, as t + t,. We have extended our solution to  t = 2.94 and for 
t 2 2.7 we have shown that a plot of log v, versus log (t,-t) yields a straight line of 
slope - &  in accord with the analysis of the singularity by van Dommelen & Shen, 
with t ,  = 3.01. 

We believe that the foregoing shows that the numerical method we have described 
in 93 is more effective and accurate than other finite-difference methods applied to 
this problem. The situation to which we have applied it above provides a particularly 
severe test, if only because through not taking advantage of the obvious symmetry 
we have, for 8 > n, been integrating ab ilzitio against the main flow direction. 

We turn next to the interactive calculation that we have carried out for this case. 
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FIGURE 3. The viscous displacement velocity vm, at various values of t ,  from the boundary- 
layer calculation. 

Previous results have been presented by Henkes & Veldman (1987) for Reynolds 
numbers lo4, lo5 and los corresponding to 6 = respectively. As 
we have already indicated we have not found it necessary to introduce grid 
stretching into these calculations. The reason for this is that in the interaction region, 
where breakaway of the flow is taking place, we no longer have the singular 
behaviour experienced with the boundary-layer equations. At finite Reynolds 
number the interaction region extends, according to Elliot, Smith & Cowley (1983), 
over an angular distance O($). Our calculations with 68 = x/90 appear to adequately 
resolve the interaction. We have again set ym = 25 and taken Sy = 0.25, St = 0.01. 

Before we present any results from our interactive calculations we draw attention 
to experimental features of these flows, as observed from the striking flow 
visualizations of Bouard & Coutenceau (1980) and Ta Phuoc LOC & Bouard (1985). 
In figure 4 (a),  reproduced from Ta Phuoc Loo & Bouard, we see the flow over the rear 
part of a circular cylinder at  t = 4, for Re = 9500, following an impulsive start. The 
dominant feature for ix < 19 d x is a large recirculating eddy, E say, ahead of which 
another small feature is seen to be developing. The eddy E consists (see figure 4 b ) ,  
essentially, of two parts. In the neighbourhood of the rear stagnation point the 
recirculating flow is in a relatively thin region, say R, whilst ahead of it is a more 
prominent feature, which we refer to as the primary eddy P. The part R is a 
manifestation of the ‘lift-off’ of the boundary layer at  the rear stagnation point as 
described by Proudman & Johnson (1962). At the earlier time t = 2 the parts P and 
R of E are not distinguishable. As t increases P develops rapidly to subsume R until 
at  t = 6 there is to be seen a pair of standing eddies, symmetrically disposed about 
0 = x, prior to vortex shedding. As the Reynolds number decreases P becomes a less 
prominent feature. Thus at Re = 3000, we see from the experimental results of the 
Poitiers group presented by Ta Phuoc LOC & Bouard (1985) that, in E, P no longer 
dominates as the eddy expands to form the vortex pair prior to shedding. The 
experimental features at these two Reynolds numbers have been confirmed from 
numerical solutions of the Navier-Stokes equations, obtained by Ta Phuoc Loc & 
Bouard (1985). Numerical solutions, in broad agreement with these, have also been 

3.16 x 

9 FLM 205 
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FIGURE 4(a). The flow pattern over the rear part of the cylinder at t = 4, from Ta Phuoe LOC & 
Bouard (1985), (b )  explanatory sketch. 
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obtained by Dennis & Staniforth (1971). As Re increases above 0(104) we might 
expect the part P of the eddy E to become even more vigorous, and indeed the 
interactive calculations of Henkes & Veldman (1987) show that a t  Re = lo5 the parts 
P and R split into individual corotating eddies at t = 3. It is not surprising, therefore, 
that  S. C. R. Dennis (private communication) reports extreme difficulty in obtaining 
NavierStokes solutions for Re in excess of lo4. The qualitative changes, described 
above, in the flow development over the rear part of the cylinder, as we move up 
through the Reynolds-number range, is a feature of our interactive calculations 
which we now present. 

We have chosen to base the discussion of our results upon the viscous displacement 
velocity v, shown in figure 5 and the shear stress au/i3ylY,,, shown in figure 6, from 
which the important flow properties may be inferred. Consider first the displacement 
velocity. There is no evidence of the singular behaviour a t  t z 3 which is shown to be 
developing in the boundary-layer calculation (figure 3). In fact, in all cases the 
extrema are reduced. However beyond t = 3 new features emerge. Consider figure 
5 ( b )  for the case Re = lo5. For t > 3.2 there is, in addition to the large positive and 
negative peaks in vm, an additional region in which v, is positive. The distribution 
of v, for t > 3 is entirely consistent with a flow development, beyond separation, of 
two corotating eddies, as described by Henkes & Veldman (1987), and alluded to 
above. We turn next to  the case Re = lo4 shown in figure 5 ( c ) .  The flow development 
is now dominated by that of the rear-stagnation-point eddy, referred to  above as R, 
with no apparent ‘individualization ’ of what we have described above as the primary 
eddy P. This qualitative change in the behaviour of the flow is in accord with that 
noted above in our discussion of the experimental results. We cannot, of course, 
expect our calculations to  describe the situation much beyond the point to which we 
have taken them. Our interactive equations (6) and (7) are based upon a thin-layer 
approximation, and it is well-known that the developments we are describing beyond 
separation do not long remain within a thin layer. Figure 4 (a)  bears witness to this. 

For very high Reynolds number we would expect, a t  least for times up to which 
the boundary-layer calculation fails, that the interactive calculation will yield results 
that  are close to those of boundary-layer theory and that the two calculations will 
diverge, a t  a given time, as the Reynolds number decreases. This is clearly seen in 
figure 5, but the differences are even more striking when we consider the shear stress 
distributions in figure 6. The most noticeable feature, which is confirmed from results 
obtained a t  intermediate Reynolds numbers, is that the minimum of the shear stress 
does not vary monotonically with ,Re at a given time. However, as with figure 5 ( c ) ,  
the results of figure 6 again show the qualitative change that takes place in the flow 
properties as the Reynolds number decreases and the individualization of a primary 
eddy does not occur. It seem? unlikely that an interactive calculation of the present 
type can be wholly successful in describing a flow whose dominant features do not 
reflect those of the high-Reynolds-number limit. That our results are open to question 
a t  Reynolds numbers 0(104) and less is suggested from a comparison with the 
accurate Navier-Stokes calculations of Dennis & Staniforth (1971). Our results are 
seen, in figure 6, to differ from those of Dennis & Staniforth. They are very similar 
to the results of Henkes & Veldman (1987) at Re = lo4, although somewhat closer to 
the Navier-Stokes predictions. Henkes & Veldman suggest that the discrepancy may 
be due to finite curvature effects. However, we have carried out calculations in which 
the terms O(e) in our governing equations are included, and report a negligible 
change in the results a t  Re = lo4. We are forced to conclude that there is a Reynolds 
number below which interactive theories of the type used here, and elsewhere, are of 

9-2 
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limited value in relation to  the NavierStokes equations for unsteady complex flows, 
except a t  small values of time. At the same time we again comment on the apparent 
difficulty in obtaining solutions of the Navier-Stokes equations for this problem for 
Reynolds numbers in excess of lo4, and suggest that this is not entirely unconnected 
with the vigorous viscous-inviscid interaction which we have demonstrated in 
figures 5 and 6. 

4.2. The vortex and cylinder 
In  this section we apply the method outlined in $ 3  to determine the flow that is 
induced when an inviscid line vortex with circulation r is introduced, a t  time t = 0, 
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FIGURE 5. The viscous displacement velocity urn, at various values oft,  from the interactive 
calculation. (a) Re = lo6, ( b )  lo5, ( c )  lo4. 

90 135 180 

0 (degrees) 
FIGURE 6. The skin friction at t = 3 from the interactive calculation (a )  Re = lo6, (b)  lo5, (c) lo4 : 
~ . ~ . -  , at t = 3, Re = lo4 from the Navier-Stokes equations (Dennis & Staniforth 1979) ; ----, at 
t = 2.94 from the boundary-layer calculation. 

in the vicinity of, and parallel to, a circular cylinder. We take the reference velocity 
U, = r / v ,  and if the vortex is initially at the point (R , sc )  then 

where 

1-R2+l-22Rcos(B-8) 

t 

2nR2(R2 - 1) * 
@ = n -  

Figure 7 provides a definition sketch of this situation. 
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FIGURE 7 .  Definition sketch. S,, S, represent the stagnation points of attachment and separation 
respectively, D is the dividing streamline and 8, the initial angular position of the vortex. 

100 

urn 
50 

124 I54 
6 (degrees) 

184 

FIGURE 8. The viscous displacement velocity urn, at various values of t ,  from the boundary- 
layer calculation. 

As with the previous example we first consider the limiting case of boundary-layer 
flow. Our calculations have been carried out with the numerical parameters set as for 
the previous example, namely ym = 25, Sy = 0.25, St = 0.01, Sa = x/180, with grid 
stretching implemented as represented by equation (10). We again present our re- 
sults, obtained for R = 2, in the form of the viscous displacement velocity urn, figure 8, 
and the boundary shear stress au/aylY,,,, figure 9. The dominant, and expected, 
feature is the development of a singularity in our solution at a finite time. This 
is again to be seen most clearly in the behaviour of the displacement velocity in 
figure 8. A careful examination of our results shows that the singular behaviour is as 
predicted by van Dommelen & Shen (1980) with the breakdown time t, = 4.64. 
During this time the vortex has moved an angular distance of only 3F. This rapid 
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breakdown of the boundary-layer solution, witnessed also in $4.1, is typical of these 
unsteady boundary-layer situations, and has also been encountered by Doligalski & 
Walker (1984) in their study of a rectilinear vortex convected past a plane boundary, 
and by Ersoy & Walker (1986) who consider the motion of a vortex pair over a plane 
boundary. The flow details before this breakdown of the solution occurs may be 
inferred from figures 8 and 9. At the initial instant there are stagnation points of 
attachment and separation on the boundary a t  19 = @ and $ 7 ~  respectively. 
Throughout the period of the flow development up to breakdown these points move 
only slightly, following the direction of motion of the vortex. At about t = 1 
significant changes in the flow between the angular position of the vortex and the 
stagnation point of separation ahead of it, begin to take place. A flow reversal, as 
indicated by the region of positive shear stress which develops and by the 
distribution of vm, indicates a growing eddy ahead of, and in which the vorticity has 
opposite sign to, the driving vortex. This is as to be expected in the adverse pressure 
gradient ahead of the vortex, exactly as for the impulsively moved cylinder. This 
flow development ends abruptly at t = t, in the boundary-layer calculation. 

We have carried out calculations for different values of R, but note no qualitative 
changes in the flow development described above. The breakdown time t ,  increases 
monotonically with R,  although the angular distance moved by the vortex during 
this time changes little. 

The interactive calculations have been carried out in the manner described in 
$4.1 for the impulsively moved cylinder. We have again employed the upwind- 
difference scheme, and used the same computational mesh. Consistent with our 
neglect of the terms O(s) in (6) we have ignored any viscous diffusion of the vortex. 
However, we have incorporated into our scheme the effect of displacement on the 
vortex position, though in practice this is negligible. The vortex position (R, 0) is 
determined as follows. If (V ,  U )  are the radial and transverse components of velocity 
a t  the vortex then we have 

Vdt, 0 = O 0 +  (12) 
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FIGURE 10. The viscous displacement velocity v,, at various values oft,  from the interactive 
calculation. ( a )  Re = lo6, ( b )  lo5. 

where 
e 2n v,sin (p-0)dp u=-  

2xR(R2- 1 )  -Is, 1 +R2 -2R cos (p- 0) ’ 

with (Ro, 0J, the initial vortex position, equal to ( 2 ,  K )  in our calculations. 
We again centre our discussion of the results we have obtained on the viscous 

displacement velocity and the shear stress at the cylinder. But before we consider 
these in detail we remark that this flow is a much less complex flow than that which 
we considered in $4.1. In that flow we noted the qualitative changes that take place 
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FIGURE 11. The skin friction, at various values of t ,  from the interactive calculation. Re = lo6. 

as the Reynolds number decreases, with the primary eddy P becoming less 
prominent whilst the recirculation region R at the rear stagnation point assumes a 
more significant role. There is no such feature associated with the vortex-induced 
flow over the cylinder and as a consequence our calculations, again carried out at 
Re = lo6, lo5 and lo4, show no qualitative differences, and indeed reflect the features 
that we have already noted in our discussion of the boundary-layer solution. 

The viscous displacement velocity is shown in figure 10, with the shear stress in 
figure 11.  Since there are no qualitative changes to be observed we have included 
results only a t  Re = lo6 and lo5. We have, as expected, been able to  continue our 
integration of (6) beyond the singular point of the boundary-layer solution. 
However, as in the previous example there is no steady-state solution to be achieved 
here, and we can only expect our interactive calculation to  be valid as long as the 
thin-layer approximation upon which it is based remains valid. The most noticeable 
feature of our results is, again, a reduction in the peak of the displacement velocity, 
shown in figure 10. This maximum is located just ahead of the vortex, which itself 
has moved an angular distance of only about 4 O  a t  t = 5.5 ; beyond that is a region 
of comparably large negative velocity. This distribution of the viscous displacement 
velocity, taken together with that of the skin friction shown in figure 11, clearly 
demonstrates the existence of an eddy, arising from flow separation, just  ahead of the 
vortex. The flow development described above is clearly seen in the streamline 
patterns shown in figure 12. These streamline patterns complement those presented 
by Henkes & Veldman (1987) for the flow past an impulsively moved cylinder. Like 
those authors we have stretched the radial scale outside the cylinder, in this case by 
a factor e-l, in order to reveal the flow details. Thus the separated flow region is very 
thin, and occupies no more than about 8% of the cylinder radius. As the flow 
develops further, beyond the scope of our interactive calculation, this situation must 
change dramatically as vortex shedding from the cylinder takes place. 

An interactive calculation has also been carried out, in the Eulerian framework, for 
a rectilinear vortex convected past a plane boundary in a uniform flow by Chuang 
& Conlisk (1989). Although the solution is continued beyond the time a t  which the 
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FIGURE 12. Streamlines from the interactive calcuhtion for Re = lo6 a t  (a) t = 3, (b)  4.5, (c) 5. 8, 
is the stagnation point of attachment, S the point of flow separation. The scale for r > 1 has been 
magnified by a factor cl. 

boundary-layer calculation fails, it  breaks down as the strong interaction develops. 
We attribute our success, in this respect, to the use of the stream function-vorticity 
formulation in which no assumptions about the pressure gradient are required. 

5. Conclusions 
In this paper we have developed a method of calculation for unsteady high- 

Reynolds-number flows, which includes the limiting boundary-layer case. Boundary- 
layer calculations have been carried out for the impulsive flow past a circular 
cylinder, and the flow induced when a line vortex is introduced into the 
neighbourhood of a circular cylinder. These calculations terminate in a singular 
behaviour at a finite time, with a structure that is in accord with the analysis of van 
Dommelen & Shen (1980). The solutions have been extended to high, but finite, 
values of the Reynolds number using a viscous-inviscid interaction model which is 
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based upon a thin-layer approximation. Calculations carried out using this model 
indicate that the boundary-layer singularity is removed. No singularity has appeared 
in our interactive calculations. However, in neither of the problems we have 
considered is a steady-state solution available, and our procedures can only be valid 
as long as the thin-layer approximation itself remains valid. The results we have 
obtaincd for the impulsively moved cylinder confirm the results obtained by Henkes 
& Veldman (1987), and recover, qualitatively anyway, features of the careful 
observations made of this flow by Bouard & Coutenceau (1980). With confidence 
established in the effectiveness of our interactive method we have used it to reveal the 
initial, developing, flow features when a line vortex is introduced to the 
neighbourhood of a circular cylinder. We have shown how a recirculating separated 
flow region develops ahead of the vortex but, restricted as we are to cases in which 
the eddy must remain thin, we are not able to continue the calculation up to the 
point where shedding of vorticity from the cylinder surface takes place. 
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